Introduction to Zirconia Ceramic Materials
Zirconia, a precision ceramic material with high mechanical strength and fracture toughness, is used in blades, shears, cutting tools, and pump components. Its thermal and chemical stability makes it essential for high-temperature and corrosive environments in aerospace, automotive, and electronics industries.
E-mail:sales01@hkceramic.com
Plate material mm (L, H, and W can be selected as needed, customization supported) | ||||||||||||
L | 3 | 5 | 8 | 10 | 12 | 15 | 18 | 20 | 22 | 25 | 28 | More (Customizable) |
W*H | 100*100 | 90*140 | 95*145 | 150*150 | 160*160 | 122*290 | 110*275 | More (Customizable) | ||||
Rod material mm (W, Ø can be selected as needed, customization supported) | ||||||||||||
Ø | 0.5 | 0.8 | 0.9 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | More (Customizable) |
W | 60 | 100 | 120 | 200 | More (Customizable) |
Zirconia (Zirconium dioxide, ZrO2) is a highly unique and valuable ceramic material, possessing a variety of remarkable properties.
1. Outstanding Mechanical Performance and Applications
Zirconia (Zirconium dioxide, ZrO2) exhibits superior mechanical characteristics compared to alumina, including higher strength and fracture toughness. These properties make zirconia an ideal choice for many industrial applications, especially in environments requiring materials to withstand extreme forces and wear.
- High Strength and Fracture Toughness: Zirconia surpasses many traditional ceramic materials in strength and toughness, allowing it to remain stable under impact and stress, reducing the risk of fracture.
- Industrial Applications: Due to its high strength and wear resistance, zirconia is commonly used in manufacturing various high-performance industrial components such as parts in milling machines, sliding components, and cutting tool blades. These applications often demand materials capable of withstanding repeated mechanical stress without failure.
2. Excellent Thermal Insulation and Low Thermal Conductivity
Zirconia also boasts excellent thermal insulation properties, with significantly lower thermal conductivity compared to other ceramic materials.
- Low Thermal Conductivity: Zirconia has only one-tenth the thermal conductivity of some other common ceramic materials. This characteristic makes it highly useful in applications requiring insulation or thermal management.
- Thermal Management Applications: For example, in certain chemical processing equipment and high-temperature furnaces, zirconia can be used as a thermal barrier, helping to control temperatures and protect sensitive mechanical components from overheating damage.
Type | Unit | Zirconia | Zirconia(ZrO2-MgO) | ||
Material | \ | 94.4% ZrO2-Y2O3 |
94% ZrO2-Y2O3 |
94% ZrO2-Y2O3 |
94.4% ZrO2-MgO |
Colour | \ | White | Black | Blue | Yellow |
Density | g/cm3 | 6 | 5.6 | 6 | 5.7 |
Type | Unit | Zirconia | Zirconia(ZrO2-MgO) | ||
Material | \ | 94.4% ZrO2-Y2O3 |
94% ZrO2-Y2O3 |
94% ZrO2-Y2O3 |
94.4% ZrO2-MgO |
Colour | \ | White | Black | Blue | Yellow |
Flexural Strength(20℃) | Mpa | 800 | 710 | 900 | 500 |
Compressive Strength(20℃) | Mpa | 2000 | 2000 | 2000 | 2500 |
Modulus of Elastic(young)(20℃) | Gpa | 200 | 210 | 220 | 250 |
Tracture Toughness(20℃) | MPam½ | 9 | 8 | 8 | 6 |
Poi sion’s Ratio(20℃) | \ | 0.3 | 0.3 | 0.3 | |
Hardness HRA(20℃) | HRA | 88 | 85 | 90 | |
Vickers Hardness(HV1) | kg/mm2 | 1175 | 1100 | 1220 | 1100 |
Rockwell Hardness(45N) | R45N | 78 | 75 | 78 |
Type | Unit | Zirconia | Zirconia(ZrO2-MgO) | ||
Material | \ | 94.4% ZrO2-Y2O3 |
94% ZrO2-Y2O3 |
94% ZrO2-Y2O3 |
94.4% ZrO2-MgO |
Colour | \ | White | Black | Blue | Yellow |
Thermal Expansion Coefficient | 10-6K-1 | 9.6 | 9.5 | 10 | 10 |
Thermal Conductivity | W/mk | 2.5 | 3 | 3 | 3 |
Thermal Shock Resistance | △T.℃ | 250 | 300 | 300 | 450 |
Specific Heat Capacity | J/g·k | 0.46 | 0.48 | 0.46 | |
Max working Temperature(In Oxidizing) | ℃ | 800 | 800 | 800 | 2100 |
Type | Unit | Zirconia | Zirconia(ZrO2-MgO) | ||
Material | \ | 94.4% ZrO2-Y2O3 |
94% ZrO2-Y2O3 |
94% ZrO2-Y2O3 |
94.4% ZrO2-MgO |
Colour | \ | White | Black | Blue | Yellow |
Vol une Resistivity at 20℃ | Ωcm | 1014 | 1010 | 1014 | 1014 |
Dielectric Strength | KV/mm | 13 | 13 | 13 | 13 |
Dielectric Constant | \ | 28 | 28 | 28 | 28 |
Dielectric LossAngle at 20℃,1MHz20℃ | tanδ | 17*10-4 | 17*10-4 | 17*10-4 | 17*10-4 |
*For more details, please feel free to contact our company.
Black silicon nitride ceramic locating pins
Material:Silicon Nitride Ceramics
Describe:Explore black silicon nitride (Si3N4) ceramic positioning pins, essential in welding processes. Known for exceptional mechanical properties, high temperature resistance, thermal shock stability, and wear resistance, silicon nitride excels in extreme environments like high-temperature welding operations.
Covered zirconia ceramic crucible
Material:Zirconia Ceramics
Describe:These crucibles feature a smooth exterior shell and tight-fitting lid to prevent sample contamination and minimize volatile substance loss during heating. The lid enhances thermal efficiency, maintaining constant temperatures and protecting operators from high temperatures. Zirconia, prized for its high melting point, heat resistance, and chemical stability, is crucial in high-temperature and chemical-resistant industrial and experimental applications.
Alumina ceramic protective sleeve
Material:Alumina ceramics
Describe:Precision ceramic custom products like alumina ceramic protective sleeves for soldering irons, electrically insulating heating ceramic tube sleeves, and high-temperature resistant ceramic wire connectors offer exceptional thermal stability, electrical insulation, high-temperature stability, and wear resistance. Used extensively in soldering irons, heating equipment, electronics, and more, these ceramics are crucial for applications needing high temperature resistance, electrical insulation, and wear resistance.
Zirconia ceramic cutting blade
Material:Zirconia Ceramics
Describe:Custom zirconia ceramic cutting blade designed for precise cutting of lithium battery separators. Known for its exceptional hardness and wear resistance, this blade maintains sharpness for extended cutting performance. Featuring multiple holes and precise mounting points, it ensures stable and precise alignment during high-speed operations.
Silicon Nitride Ceramic Piston Rod
Material:Silicon Nitride Ceramics
Describe:Explore silicon nitride (Si3N4) ceramic piston rods, ideal for high-temperature, high-pressure, and corrosive environments in automotive, aerospace, and petrochemical industries. Designed to endure rigorous mechanical and thermal stresses, silicon nitride ensures long-term durability and stability.
Zirconia ceramic valve core ball
Material:Zirconia Ceramics
Describe:Zirconia ceramic valve core balls offer precise fluid control with smooth surfaces and spherical designs. Their high hardness and strength ensure reliable performance under high pressure and flow conditions, supporting stable operation and longevity in fluid control systems.